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Abstract

We present a model-based technique for encoding non-
rigid object classes in terms of object prototypes. Objects
from the same class can be parameterized by identifying
shape and appearance invariants of the class to devise low-
level representations. The approach presented here creates
a flexible model for an object class from a set of prototypes.
This model is then used to estimate the parameters of low-
level representation of novel objects as combinations of
the prototype parameters. Variations'in the object shape
are modeled as non-rigid deformations. Appearance vari-
ations are modeled as intensity variations. In the training
phase, the system is presented with several example pro-
totype images. These prototype images are registered to a
reference image by-a finite element-based technique called
Active Blobs. The deformations of the finite element model
to register a prototype image with the reference image pro-
vide the shape description or shape vector for the proto-

type. The shape vector for each prototype, is then used

to warp the prototype image onto the reference image and
obtain the corresponding texture vector. The prototype tex-
ture vectors, being warped onto the same reference image
have a pixel by pixel correspondence with each other and
hence are “shape normalized”. Given sufficient number
of prototypes that exhibit appropriate in-class variations,
the shape and the texture vectors define a linear prototype
subspace that spans the object class. Each prototype is a
vector in this subspace. The matching phase involves the
estimation of a set of combination parameters for synthe-
sis of the novel object by combining the prototype shape
and texture vectors. The strengths of this technique lie in
the combined estimation of both shape and appearance pa-
rameters. This is in contrast with the previous approaches
where shape and appearance parameters were estimated
separately.

1 Introduction

One of the primary goals of computer vision is to opti-
mally and reliably compute object descriptions from im-
ages. Such descriptions are useful for various purposes like
object recognition and analysis. Important characteristics
of such descriptions are that they should be easily com-
putable and unique. Various methods have been devised in
the past that recover object descriptions from images for
recognition. A survey of such techniques focussed on face
recognition methods reported by Fromherz and others[12]
implies that most recognition systems have been demon-
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strated on datasets taken under constrained conditions that
tend to breakdown under varying pose and lighting condi-
tions. Statistical methods, which have the potential to esti-
mate these variations, suffer from the problem of requiring
large amounts of training data[10]. We intend to formu-
late a technique that will perform reliably with such vary-
ing conditions and at the same time will estimate a flexible
model of the object class from a small set of prototypes.

A common strategy employed in computer vision to de-
sign effective algorithms is to emulate methods of reason-
ing believed to be used by human beings to perform im-
age analysis. The following subsection summarizes some
of the findings made in the community of psychophysics.
Based on these observations, we lay our framework, the
objective of which is to simulate the observations by using
existing computer vision techniques.

1.1 Human Visual System

Various psychophysical and physiological studies [11, 40,
23, 24, 4, 29] have indicated that the human visual system
uses strategies that represent objects in 2D rather than 3D
models. Several psychophysical tests have been conducted
that explore different aspects of the problem of recognition
and representation in human vision. In a nutshell, the fol-
lowing conclusions have been made from the outcomes of
a variety of psychophysical tests[4, 23]:

o Multiple views )
Evidence from various tests indicate that hu-
mans encode three dimensional objects as multi-
ple viewpoint-specific representations that are largely
two-dimensional.

o Normalization
Various stimulus tests have indicated that subordinate
level recognition is achieved by employing a time
consuming normalization process to match objects
seen in unfamiliar viewpoints to familiar stored view-
points.

o View Interpolation
Various test evidences and computational simulations
indicate that view interpolation offers a plausible ex-
planation for viewpoint dependent performance of hu-
man response times and error rates for recognition.

These results imply that the human visual system proba-
bly uses heuristics-based techniques which rely on multi-
ple views representation in terms of 2D rather than explicit
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Figure 1: Basic Idea: The images at the vertices of the triangle
represent three prototypes. The prototypes can be registered with
each other by warping them onto the average image. The shape
and texture of each prototype can then be combined to generate

new images. Here the intermediate images are represented along ~

the edges of the triangle. For each intermediate image, the con-
tribution of the adjacent prototypes is more than that of the one
farther away.

3D models with appropriate depth information. This view-
point is further supported by recent advances in computa-
tional theories based on view interpolation[11].

12 Basic Idea

The abovementioned results strongly indicate that the hu-
man mind stores a set of prototypes with significant vari-
ability and uses their combinations to recognize an object.
This motivates us to design algorithms that will represent
object classes in terms of 2D prototype images. As a start-
ing point, it will be worthwhile to study some existing com-
puter vision models and extend them to simulate the hu-
man visual system. Intuitively, an object can be thought of
as comprised of two components: shape and appearance’.
Based on this premise, we can categorize current computer
vision models broadly into two classes, namely shape mod-
els, that account for the object morphism and appearance
models, that account for the object physiognomy. Objects
from the same class can be defined in terms of small vari-
ations from an average object. These variations are de-
fined as displacements in an orthogonal coordinate system
where each axis represents a principal direction of varia-
“tion, learned statistically from a large set of examples.

Assuming that an object can be parameterized in terms
of its shape and texture features, we define our goal as fol-
fows. “Given sufficient number of good prototypes that en-
compass appropriate in-class variations, we intend to build

I'The notion of appearance is same as the dbject texture. Both terms
will be used interchangeably

a deformable appearance model that will reliably describe
the object class and explore the feasibility of modeling the
object space by a linear combinations approach”. The pa-
rameters of a novel object will be expressed as a linear
combination of the parameters of the prototype objects in
the training set. Figure 1 gives a pictorial description of the
approach. The technique for linear combinations is exhib-
ited for three prototype images.

1.2.1 Existence of coupling between shape and ap-
pearance parameters

An important observation made from most of the existing

_ shape and appearance models is that either approaches pa-

rameterize only one feature and ignores the other. For in-
stance, shape models account for shape deformations only
and ignore texture parameterization. Their objective is to
estimate the parameters of a warping function that would
warp the template image such that it matches the novel im-
age as closely as possible. Similarly, appearance models
ignore shape parameterization by presuming that the in-
put images are shape normalized or have a dense corre-
spondence defined with respect to each other. Principal
directions of texture variations are learned from-the ex-
ample images using eigen-based techniques. Some recent
approaches proposed by Cootes[6] and Nastar{28] have
shown that shape and appearance can be modeled together

" by employing the eigen-based techniques in the combined

feature space. Although, both methods have been shown to
work effectively for various object classes, it cannot be in-
ferred that the underlying linearity assumption of the com-
bined shape and texture space can be generalized to all ob-
ject classes. Hence we estimate the shape and the texture
parameters using non-linear optimization techniques with-
out any assumption about linearity. This issue will be fur-
ther analyzed during the preliminary tests of our system.

In Section 2 we introduce various shape and appearance
models previously reported in the computer vision commu-
nity. This section also discusses some of the recent meth-
ods that have proposed combined shape and appearance .
parameterization. The mathematical formulation of the de-
formable model is presented in Section 3. This section de-
velops the combination of prototypes paradigm and derives
the objective function. Section 4 describes the modeling of
non-rigid deformable objects by finite element based meth-
ods. The section gives a brief description of Active Blobs
which will be used for registration of objects. Section 5
describes the various minimization techniques that will be
used for registration and model fitting later. Section 6 de-
scribes the implementation of various phases of the system
in detail and finally summarizes the algorithm.  Prelimi-
nary results are reported in Section 7. This is followed by
the discussion of issues that explain the observed results in
Section 8. Finally we conclude with discussion for future
applications of the methodology in Section 9.



2 Background and Previous Work

This section throws light on some of the deformable shape
and view-based representations relevant for the formula-

tion of our problem and then explores some methods that

try to combine those representations to come up with a
model that makes the paradigm of linear combinations fea-
sible.

2.1 Shape Models

Initial shape representation methods concentrated on ways
to employ flexible models by constraining the solu-
tion space of allowed deformations. Kass, Witkin and
Terzopoulos[20] described a method of representing ob-
jects in images as active ‘contours or energy minimiz-
ing splines that were guided by external constraint forces
and influenced by image forces along the image gradi-
ents. Cootes proposed the Chord Length Distribution or the
Point Distribution Model[5], a method of shape represen-

* tation that estimates the chord-lengths where each object is

represented as an n-vertex polygon. The n-vertex polygons
are created by placing points over the object boundaries ei-
ther manually or semi-automatically. Training is done by
estimating the covariances of chord lengths between each
pair of vertices in the polygons created. Later Baumberg
and Hogg [2] used this idea to track contours by associat-
ing points with B-splines rather than edges of a polygon.
This method is dependent on the initial placement of the
points of the polygon and due to this reason models only
global deformations.

Sclaroff and Pentland [32, 38] had proposed a method of
representing objects in terms of modal descriptions, which
is based on the idea of describing objects by their gen-
eralized symmetries, as defined by the object's deforma-
tion modes. Unlike the point distribution model, which
statistically modeled object shapes, this method physically
modeled objects by determining the modes of free vibra-
tions of the object. The modes of an object define an
orthogonal object-centered coordinate system where each
feature point can be uniquely described as a combina-
tion of those modes. This technique has been used to
define deformable shape prototypes that could be used
for shape-based database search[36] and track deformable
objects[37].

Cootes and Taylor[7] later combined the statistically
based point distribution model and the physically based fi-
nite element model for more reliable modeling of flexible
objects. While the point distribution model accounted for
variation across object shapes, the finite element model ac-
counted for the vibrational modes of a single object shape.
This combined formulation was shown to perform better
than either of the mentioned methods alone. The major
drawback of this system is the requirement of large train-
ing sets. It may be the case that some prototypes are more
similar and hence may form clusters in the prototype sub-

space. Absence of sufficient training data will then bias the
system to interpret all the prototypes as similar to the pro-
totypes of the largest cluster in the training data. This phe-
nomenon is called true-shape vulnerability[15). The point
distribution models addressed this problem by using an hi-
erarchical representation of mean/reference shapes where
at each level, two nearest mean shapes were combined to

. obtain the mean shape in the next higher level. The hier-

archy was built in a bottom-up fashion starting with all the
prototypes at the lowest level.

2.2 Appearance-based Models

Appearance-based models seek to obtain a compact repre-
sentation for intensity distribution. One such set of tech-
niques employ eigen-based methods to compress an image
by projecting it onto a low-dimensional orthogonal basis,
the eigenspace[43]. The eigenspace is constructed as fol-
lows. Given a sufficient number of prototype images ex-
pressed as column vectors in the object class matrix, we use
principal components analysis (PCA) or Karhunen-Loeve
expansion to estimate the intensity distribution. The eigen-
vectors of the covariance matrix span the variations across
the object space as captured by the prototypes. The eigen-
vectors corresponding to the higher eigenvalues define the
directions of maximum variations and hence are chosen
to represent the eigenspace. Compact representation for a
new image is obtained by just projecting the image onto the
eigenvectors. [27, 26, 31, 43] have shown the effectiveness
of the said method especially for visual recognition. The
main weakness of eigen-based techniques is that they are
not robust to shape variations across the prototypes as they
require the prototypes to be registered with each other.

Covell[9] has proposed a similar method based on the
principal component analysis to define correspondences
between faces in terms of feature point locations. Fea-
ture correspondences so obtained were then used for mo-
tion estimation and morphing[8] between different frames
of video. This is an interesting idea where feature points
are automatically placed at correct locations. The concept
of point distribution models was extended to model inten-
sity distributions. These models are known as Appearance
models[21] and have been claimed to address the problem
of shape normalization which was not addressed in eigen-
faces. This method requires labeled examples for training.

2.3 Combined Parametric Models

In order to avoid the implicit parameterization of shape in
appearance models and make shape models more photo-
realistic, there has been a growing interest in modeling
both shape and appearance in a single model. Nastar,
Moghaddam and Pentland[28] had combined physically
based modes of vibrations with statistically-based modes
of variation by considering each point in the image as a
triplet of (z,y,I(z,y)) and doing manifold matching in
this XYT space. Although this method combined both the



statistical and physical modes of variation, it is dependent
on good initialization. '

Ullman and Basri[44] have showed that an object can
be represented as a combination of 2-D images where the
images are represented in terms of some linear transforma-
tions in the 3-D space. However, this method assumes a
linear framework for object deformations and handles only
limited non-rigid deformations.

Poggio, Jones and Vetter{17, 18, 19, 46] have suggested
that given sufficient number of prototypes, the parameter
vectors define a linear space and span the model space.
Any novel object can then be expressed as some combi-
nation of those prototype vectors. This method combines
shape or geometry with texture or appearance in a way that
minimizes both shape and appearance parameters to fit the
model. This is a robust method as the problem of model
fitting is solved as a global non-linear minimization prob-
lem. :

Cootes, Edwards and Taylor[6] have also suggested a
combined formulation of their appearance and active shape
models to develop a new model known as the Active Ap-
pearance Models. This method does PCA in both the
shape and the texture spaces separately and then combines
them and again does PCA to remove redundancies between
shape and texture parameters. All objects are then repre-
sented as some combination in this orthogonal model.

3 Mathematical Formulati(in

Let I1,I5,...,In be the N prototypes available for train-
ing the system. Let I..y be the reference image. The
objective is to define a framework whereby all the proto-
type images can be combined to generate images of novel
objects from the same class. The formulation described
here is similar in flavor to that developed by Jones and
Poggio[17], though the shape deformations are determined
by finite element methods as opposed to optical flow meth-
ods. The prototype images are initially not in correspon-
dence and hence cannot be combined. This emphasizes the
determination of pixel to pixel correspondences amongst
the prototype images. Let 51,52, ..., SN be a set of shape
parameters such that each S; can be used to warp the ith
prototype image onto the reference image, thereby bring-
ing the prototype image into correspondence with the ref-
erence image, i.e.

Si(z,y) = (&, 9) 6y

where (£, §) is the point in I; which corresponds to (z,y)
in Ir.y. We define,

Ti(xa y) = W_I(Iia S'L) ((E, y) (2)

where W is the warping function. Thus, for each proto-
type I; in the training set, we obtain a shape vector S; and

a inverse warped texture vector T;. Note that the texture
vectors are shape-free as all of the prototype images are
inverse warped onto the same reference prototype image.

Given a large number of prototypes which appropriately
vary from each other with respect to different characteris-
tics of the object class, we can define a set of parameters
b = [b1,bs,...,bn] and ¢ = [ey,¢2,...,cn] such that
the shape and the texture of a novel object L,ope; (nOt in
the prototype set) can be derived as a combination of the
prototype shape and texture parameters.

. - N
Snovel = Zczsz =c-S 3
i=1 ’
N .
..Tnovel = Z biTi =b-T @ )
C =1

Therefore, the equation for the novel image can be defined
as follows:

W Inoper,€-8) =b - T )

Hence the matching phase reduces to matching the the
novel image, which can be done by minimizing the sum
of squared differences (SSD) error

E(c7b) = % Z[W-1 (Inavela C'S)(.’L‘, y)_ (bT)(m)y)]2

z,y

: (6)
The values of the parameters ¢ and b so obtained, provide
a compact representation of the novel image in terms of
the prototypes in the training set. Since, the shape and the
texture vectors of the prototypes define two completely dif-
ferent linear subspaces for the object class and may or may
not be independent of each other, an important caveat in-
volved here is the combined estimation of both the shape
and texture parameters. Equation 6 is the basic equation
that describes the mathematical formulation of the system.
Further constraints may be employed, depending upon the
modeling of the parameters.

4 Deformable Shape Modeling

Shape modeling in the system is done by using finite ele-
ment models (FEM)[36, 38]. The advantage of finite ele-
ment models is their ability to enforce apriori constraints
on smoothness and amount of deformation, which in gen-
eral is not possible in statistically based or optical flow
based methods. FEM is a numerical approach for modal
analysis. Modal analysis is a method for identifying the in-
herent dynamic characteristics of a linear system in terms
of its natural frequencies, mode shapes and damping ra-
tios. The underlying idea of modal analysis is to represent
the vibration responses of a system as a linear combination

- of a set of simple harmonic motions[1]. This idea is similar

to Fourier analysis of waveforms.



FEM can be used for describing non-rigid deformations
of an elastic body. In this formulation, an object is mod-
eled as a sheet of rubber which can freely deform. The
surface of the object is interpolated by Galerkin method. A
set of polynomial functions are defined that relate the dis-
placement of a single point to the relative displacements of
other points. Hence all the points can be expressed in terms
of the interpolation functions as below:

u(x) = H(x)U )

where H is the set of interpolation functions, x is a vector
of all the data points and U is the vector of displacement
components at each feature point. The strains produced at
each feature point due to the displacement are obtained as
a combination of the element strains associated with the
feature points:

e(x) = B(x)U 8)

where B is the strain matrix and € is a vector of strains
produced at the point under consideration. The problem of
modal displacements is then solved as a dynamic equilib-
rium equation:

MU+DU+KU=R )

where M, D and K are the mass, damping and stiffness
matrices and R is the load matrix. The reader is directed to
[38] for detailed derivation of all the mentioned matrices.

The non-rigid deformations are then expressed in an or-
thogonal system where the basis is defined as the set of
orthonormalized eigenvectors of M—YK. Given that x is
the set of all feature points, the locations of the new feature
points is given as follows:

X+ Y il (10)
i=1

where X is the mean displacement position, x’ is the de-
formed position, i; is the jth mode parameter value and
¢; is the jth eigenvector defining the j£h modal displace-
ment. The system can be re-orthogonalized to separate the
affine parameters from the modal parameters.

4.1 Active Blobs

We use -active blobs[37] to register the prototype images.
Active blobs is a non-rigid region based finite element
method used for registration and tracking of deformable
objects. Initial blob of a reference object is created by as-
sociating a deformable polygonal mesh with the object tex-
ture map. Registration is solved as an energy minimization
problem where the shape parameters (in our case, the finite
element modes) are estimated so that difference between
the warped reference object and the novel object is min-
imized. Minimization is done by least squares approach
which will be described in detail in next section.

Let I,.5 be the reference image from which the initial
blob is created. Given a novel image I3, the goal is to ob-
tain a set of mode parameters that will transform the refer-
ence image to match the target image over the region of the
blob. The method works by estimating the change in the
parameters required to minimize the sum of squared dif-
ferences error between the current estimate and the target
image. In the implementation, instead of warping the refer-
ence image to the target image, the target image is inverse
warped to the reference image. The energy minimization
problem is formulated as follows:

. :

Eimage = EZe? (i1)
4=1 .

ei = IL(@y) — Lozl (12)

where I;(z;,y;) is the intensity of the pixel at loca-
tion (z;,y;) in the inverse warped target image I; and
Ires (i, y;) is the intensity of the pixel at the same location

"in the reference image. The adverse effect of the outliers

that tend to throw the minimization process out of track are
handled by using a robust error norm which is a Lorentzian
influence function p, given as:

zmage = - Zp(eua) (13)

2
€

ple;, o) =log(1 + ) (14)

where o is an optional scale parameter.

S Minimization Techniques

This section introduces two minimization techniques
namely, difference decomposition and Levenberg Mar-
quardt, that were used to register prototype images by ac-
tive blobs and fit the model to novel images. While the for-
mer is a locally-linear approach, the latter is a non-linear
approach of minimization. Model fitting will be described
in the next section.

5.1 Difference Decomposition Method

Minimization of certain linear least squares problems can
be accomplished via difference decomposition{13]. The
method works by estimating derivatives of the function
along each parameter. The derivatives are estimated by tak-
ing difference between the warped reference image and the
original reference image. The warping is done by adding a
small displacement to the parameter with respect to which
the derivative is to be taken. This works well under the
assumption that the function to be minimized is locally lin-
ear. Let N = {ng]...|nm }T be a matrix whose rows are the
displacement vectors. Let B = {bp|...|by }T be the matrix
whose rows are the difference templates corresponding to
each displacement vector obtained as mentioned above:

be = Io = W (Io, i) (15)



W is the warping function. The intuition behind the ap-
proach is as follows. During the minimization phase, if
the difference image between the warped reference image
and the target image is similar to the difference template
by, then the change in the warping parameters required to
register the reference image with the target image is given
by ng. Thus, if the difference image can be expressed as
a combination of the difference templates, then the change
in the parameters required is given by the combination of
the displacement vectors. The difference patterns can be
generated from the reference image, and hence are pre-
computed. Let the current estimate of the parameters be
g. Then the difference between the inverse warped target
image and the reference image is given as: '

D=L -W(l,q) (16)

By the linearity assumption, this difference image D can
be approximated as a combination of the difference basis
vectors:

D~ BTk (17

where k is a vector that gives the combination coefficients.
Since it is an over-constrained system, the solution is ob-
tained by least-squares approximation whereby k is ob-
tained as:

' k= (BBT)'DBT (18)

The corresponding change in the warping parameters is
computed and the parameters are updated as below:

Ag = Nk (19)
¢ =q+Aq (20)

5.2 Levenberg Marquardt Method

Levenberg Marquardt method is a non-linear minimization
technique that performs more reliably than difference de-
composition as it does not make any assumptions regarding
linearity of the function. The technique uses a combination
of linear and non-linear approaches for updating parame-
ters during each iteration. Smooth switching between the
two approaches is accomplished by a weighting term A.
When the magnitude of A is low, the minimization is done
in a linearized fashion by Gauss-Newton method whereas
higher magnitude of A forces the system to be solved in
quadratic fashion by using Gradient Descent technigue.

The mathematical formulation is as follows. Given an
objective function E, the parameters of which are ¢', the
goal is to determine an instance g that minimizes the value
of E. This is achieved iteratively by solving the following
set of simultaneous equations:

(H+A)Ag=g @1)
qd =q+Aq 22)

where H, g and ) are the Hessian matrix, the gradient vec-
tor and the controlling parameter respectively. The gradi-

ent vector and the Hessian matrix are determined as fol-
lows:

O0F :
gk = ™ ~ (23)
O0F OFE
= e — 24
* = bax g @4

The cost of the objective function is determined with the
updated parameter values ¢'. If the cost has decreased as
compared to its previous value then the system tends to
linear minimization by scaling down A by a factor of 10.
If the cost has increased then the system moves towards
quadratic minimization by scaling up A by 10. In the for-
mer case, the parameters are updated to ¢’, whereas in the
latter case, the updated parameter vector ¢’ is discarded and
we proceed with the old parameter vector q. Higher values
of ) restrict parameter displacement in the error space and
force the solution to move along the steepest gradient.

5.3 Gaussian Pyramids

It is not uncommon to find situations where the minimiza-
tion solution gets trapped in local minima. This may hap-
pen when the error function is not exactly concave or the
amount of change allowed in the parameters do not move
the current estimate closer to the global minima. As aresult
the solution gradually drifts into a local trough and eventu-
ally gets trapped inside there. Such problems can be han-
dled reliably by using a multigrid relaxation approach[41).
These methods work by taking advantage of multiple dis-
cretizations and smoothing of a continuous problem over
a range of resolution levels. Solution to a minimization
problem requires computations proportional to the spatial
distance between the current estimate and the actual so-
lution. This suggests the possibility of speedup by com-
puting the solution over a coarse grid and then enhance it
by successively refining the grid. Pyramids are one such
multi-resolution technique used in image processing[35].

The pyramids used in the current implementation are
called octave pyramids as at each level the image is halved
in each dimension and subsampled. Successive reduction
in the resolution and subsampling results in the loss of
high frequency components in the original image. In other
words, this is equivalent to filtering the image through low-
pass filters whereby the image is blurred by Gaussian ker-
nels at each level. Thus at the coarsest level, it may be as-
sumed that all the components corresponding to the Jocal
minima are smoothened enough to be determined as pos-
sible points of solution. Hence when successive solutions
are computed from the coarsest levels and propagated to
the finer levels, the solution tends towards the global min-
ima and eventually it may be expected to converge to the
actual global minima.



Inputs:

e Prototypes: I, Ia,...,IN.

o Initial reference image: Ir.f.
Outputs:

e Final reference blob: I;..¢.
Steps:

o Iterate

— For each prototype I; do
* Register Iro¢ with I;.

* S; = set of mode values required to reg-
ister Iy with I;.

* T; = W—I(I-,;,S,',).
EndFor.
N
~ Savg = 7 Lj=1 Si-

- 1 WV
= Tang = N Zj:l T;.
— Create new reference image:
Iref = W(Tavg’ Savg)-

!

= dref =Iref'

¢ Untiliterations # n and
Yoy Mres(@,9) = Ires (z,)|| 2 threshold.

vFigure 2: Algorithm: Average Image Computation

6 Implementation
6.1 Average Image Computation -

If the reference image happens to be from a group of im-
ages that are clustered together in the prototype space, then
the results would be biased towards the prototypes in that
cluster. Hence we use the average image which will be
fairly equidistant from each of the prototypes. This aver-
age image is computed in an iterative fashion. We start
with an arbitrary reference image I,..;. The user circles
out the region of interest from which a blob is created. The
basic steps for average image computation have been enu-
merated in Figure 2. ‘

6.2 Training and Matching Phases

Once the reference image has been computed, the system
needs to be trained with each of the prototype images. This
is done by registering each image with the reference image.
The mode values are stored as the shape vectors and the
inverse warped prototype images are stored as the texture
vectors. The reconstruction of a novel object is obtained by
minimizing Equation 6. The computations involved in the
training and matching phases vary according to the mini-
mization method used. The basic steps are enumerated in

Figures 3 and 4.

6.2.1 Difference Decomposition Method

Difference decomposition method, assumes that the proto-
type space is linear. The method works by precomputing
the estimates of the first derivatives of the function with
respect to each parameter and using them later to approx-
imate the current difference between the estimate and the
target image as a linear combination of the precomputed
derivatives.

Training Phase

. Assuming that the reference image is very close to

the average image, we can use difference decomposition to
minimize the objective function. The intuition is that the
difference between the novel image and the average image
should be expressible as a combination of the differences
between the average image and the prototype images. Let
Savg and Tgyy be the average mode and texture vectors
respectively. Then in the ideal case

. .
E = 2 Z[W_l (Zavg, Savg) (@, y) — Tm,g(x,y)]z
z,y '
N
+ 1 a-17=0 - ®
i=1 o

where all the coefficients ¢; and b; have the value % The
second term in the equation is a constraint term that re-
stricts the shape parameters to sum to unity in order to ac-
count for redundancies due to the inclusion of affine pa-
rameters like scale and rotation etc. in the modal parame-
ters. In the average case, this term in the equation is equal
to zero. The difference templates can be computed by vary-
ing each parameter n; by a value §; such that the energy of
the difference images due to each §; is same as E;presh,
where Eipresn, is some threshold. For each energy level a
positive and a negative §; is determined by the bisection
method. Initially, only one entry corresponding to a partic-
ular parameter is non-zero and all others are zero. For a sin-
gle energy level Eipresp then the basis displacement ma-
trix looks like N = {no,...|1n0,in] - [Pimmas Pmomin }-
where n; . and n;_ . are the positive and negative dis-
placement vectors, that have non-zero entries §; . and
di,.;, Tespectively at the ith entry and 0 elsewhere. These
displacement vectors produce difference templates B =
{00,.02100,in | - - - |Priinas |Prrmin } © - The matrix B may be
ill-conditioned due to redundancies in the shape and the
texture vectors. As a result it can't be used directly for
difference decomposition as described in Section 5.

In order to remove those redundancies, we transform
the displacement vectors such that the resulting difference
templates would be near orthogonal. This transformation



Inputs:
o Reference blob: I..;.

» Difference decomposition basis vectors:
N = {ni,n2,...,nm}%

Outputs:

o Prototype texture vectors:
T={NT,...,Tn}.

¢ Prototype shape vectors:
S={%,9,...,5n8}

¢ Difference image templates:
B = {b1,b2,...,bm}"

Steps:
1. For each prototype I; do

o S, = set of mode values required to register

Ires with T;.
o Ty =W, Si).
EndFor,

2. $=4{5,952,...,9n}.
3. T= {Tl.,Tz,. .. ,TN}.
4. Xf minimization == Difference decomposition

, LN
® Savg =N Zj:’l SJ.
_ 15N m
® Tovg = Zj=1 T;.
e Foreachn; € N do
- Dghape = {n,...,n]}.

—_ N+1 2N
= Dtexture = {'nf,,: + PR (7

- bi(way) = W—I(Tavg; Savg)(x, 'y) -
w1 (ntexture - T, Nshape * S)(a:,y).

- EndFor.
o B={b,bs,...,bn}
e Save T,Sand B.
EndIf
5. Xf minimization == Levenberg Marquardt then -

e Save T, S.
EndIf

“required only for Difference Decomposition.

Figure 3: Algorithm: Training Phase

is obtained by using singular value decomposition (SVD)
as follows,

B=UsVT - @6)
N* = N(BTUy) 27

where U and V are left and right singular vectors respec-
tively and o is the matrix of singular values of B; U; is -
the truncated left singular vectors' matrix [42, 3]. The last
equation is obtained as the result of linearity assumption.
If rank(B) = t and R(B) and N(B) are the range and
null spaces of B then

»R(B) = span{ui,... ;ut} (28)
N(B) = span{vtﬂ, ey Un} (29

N* is the new set of displacement vectors obtained. Note
that N* will now have fewer displacement vectors as com-
pared to N because of truncation and will not be sparse
anymore. New difference templates B* = {bo*|... |b;*}T
are determined corresponding to the displacement vectors
in N*. k is the point where the singular values were
truncated. This new B* matrix is now used in place of the
B matrix in difference decomposition.

Matching Phase

Let the mixing parameters for the shape ‘and the
texture vectors of the prototypes be represented by
¢ = [c1,...,cn] and b = [by,...,by]. Given a novel
image I,oyer, the mixing parameters ¢ = [c|b] are
obtainéd by projecting the difference image D onto .the
difference decomposition basis, where D is obtained as:

D(:B,y) = W_I(Inqvel, c: S)(a:,y) = (b-T)(z,y) (30)

The change in the mixing parameters % is obtained in the
least squares framework as follows:

E=(B*Tk-D)? +~(W(qg+ N*k) —1)2 (31) |

where the second term is the constraint term expressed in
matrix notation. W is an weighting vector which contains
1's corresponding to the shape terms and 0's for all texture
terms. Differentiating, both sides we get
- 4
% = 2x[B*B*"k - DB*T + yN*WTWq

- AN*WT AN WIWNTE]) (32)
Rearranging the terms and evaluating to zero we get,

E = [B*B*T-F’YN*WTWN*T]-l[DB*T
~yN*WTWq +yN*WT] (33)

Ag=N*k (34)
Ag = [Ac|Ab] 35)



The mixing parameters are then updated to get the new
mixing parameters and this process is iterated until they
stop changing or a fixed number of iterations are complete.

¢ =q+4Ag (36)

The final reconstruction has the shape of the deformed blob
with mode values obtained as combination of the mode val-
ues of all the prototypes as determined by ¢ parameters and
the texture as determined by the b parameters.

6.2.2 Levenberg Marquhrdt Method

The training phase for this method typically involves the
" registration of the prototype images and determination of

the shape and the texture vectors for each prototype. No

precomputations are required for this method.

Matching Phase

The matching phase for a novel image involves the
minimization of the error function given above. The
_minimization is performed by computing the first and
second derivatives of the objective function and equating
them according to the first approximation principle for
derivatives. For simplicity, we use forward warping in-
stead of inverse warping for this method of minimization.
Hence the objective function along with its required
derivatives is given as follows:

Bb,e) = 33 lnowa@y) = Wib-T,e-S)(z,))
{E,yN
+v(Q_ e — 1) 37
k=1
Lo S lhevale:4) = Wb T, 8)(a)]
[-W(Tk ¢ S)(z,9)] (38)
= - S lhense) = Wb T S)(e)
)
N .
+27(> e -1) - (39)
k=1
20D ey) = Wb-T,(e+A0)-S)(aw)

- W(b:T,c-S)(z,y)]/A (40)

Ac, =10,...,k — ltimes, A,0,...,0] “n

Inputs:

¢ Prototype shape and texture vectors:
S= {Sl,...,SN} and T = {Tl,...,TN}.

o Novel Image: I, pqei.

e Basis vectors and difference templates®:
N={ni,...,nn}and B = {b1,...,bn}.

Outputs:

e Combination parameters: ¢ and b.

¢ Reconstructed novel image: Ircconstruction-
Steps:

cc=b={}, ., 3}a={cb}

o If minimizaﬁon == Difference decomposition

— Iterate
* Compute D.
* Ag= N([BBT|-*DBT).
x g =q+ Ag.
+ Compute E(c,b).

- Until iterations # n and

||E|| > threshold.
EndIf

o X minimization == Levenberg Marquardt

— Iterate
* Ag= (H+ M) yg.
*x ¢ =g+ Ag.

¢ ={¢"...,¢"}

" bl. = {qu+1’ . ’qI2N}.
* Compute E(c’,b’).

x If || E|| decreased then

- g=q; A= )/10.
else

< A= Ax10.
EndIf

- Until iterations # n and
||El} > threshold.

EndIf
e c={¢,....,d" b= {g"*,...,¢*"}.

® lreconstruction = W(b -T, ¢ 8S).

%required only for Difference Decomposition.

Figure 4: Algorithm: Matching Phase




The second derivatives of the given function are approxi-
mated as below:

8°E _ 8E OE
6m¢8mj - Bmi ij

(42)

where my = c or bg. These derivatives so obtained are
then used to define the gradient vector and the Hessian ma-
trix and the system of equations are solved as described in
Section 5.2. The parameter vector ¢ is defined as a com-
posite vector of the shape and the appearance parameters:

g = [c[b] , (43)

This process is -iterated until the final error magnitude
drops below a given threshold or a fixed number of iter-
ations are completed. The X in the equation above, acts as
a time-varying control parameter that forces the solution
to follow the steepest gradient in order to converge to the
minimum.,

7 Feasibility Study

The system was implemented with both the strategies de-
scribed. The system was tested with two types of datasets,
. namely face images and sequences of heart images, and
was tested with some images from the training set as well
as some novel images that were not present in the train-
ing set. It was observed that the implementation worked
well with Levenberg Marquardt method whereas it failed
to produce satisfactory results with difference decomposi-
tion method. The possible explanations for the observed
behavior and further extensions are discussed in Section 8.

7.1 Test Set 1: Face Images

Figure 5: Average face image

The code for registration of images was taken from Ac-
tive Blobs which is available on the internet?, The proto-
type set comprises of random face images drawn from the
MIT database (see Figure 6). Several novel face images,
which were not present in the training set, were tested. All
of those could be reconstructed in the combination of pa-
rameters paradigm described earlier. The images are of
dimension 128x128 pixels. The size of the faces inside
the images was typically around 64x64 pixels. The imple-
mentation makes extensive use of the graphics hardware
for texture mapping and bilinear interpolation. Currently

2http:/iwww.cs.bu.edu/groupsfive/
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Figure 6: Prototype face images (#prototypes = 100)



the reconstruction of a novel face image takes around 8
minutes on a R5000 SGI 02, 180 MHz machine. Major-
ity of time is spent in combining the prototype images at
each iteration for the reconstruction of novel image. The
texture vectors for the prototype images comprise of the
whole texture. Significant speedup is possible by dimen-
sionality reduction. In future, we intend to evaluate the
system with dimensionally reduced prototype texture vec-
tors, where we will use coefficients obtained by projecting
prototype images into the eigenspace instead of textures.
We expect the performance of the system would improve
as we will have to combine less number of eigen-images
for reconstruction. We can further reduce the computa-
tion time by doing minimization on only one color channel.
Various other alternatives are also currently being explored
to improve the computation time (see section 8). The fol-
lowing paragraphs explain the working of the system using
Levenberg-Marquardt method.

@

(e

Figure 7: Reconstructed novel face images. Left: input novel
image; Middle: average image registration; Right: reconstruction

The user starts with thefaverage image computation
phase. In this phase the user circles the region of interest
(in the current experiment, outlines the face in the image)
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and a blob is created from the encircled region. This blob
is then used to register other face images. For each pro-
totype image, the user moves the blob and places it over
the face. Then the blob is allowed to automatically deform
and register with the face underneath it. Shape and texture
parameters are recovered. Since all the face images in the
MIT database have been placed such that the positions of
their eyes coincide, we can automate this process by plac-
ing the blob at a designated position in the image, rather
than having the user place it. Alternately, we can use a
face detector for initial placement of the blob, but then it
would handle only face images. The outcome of this stage
is the average blob which is then saved for future use.

In the training phase, the average blob is loaded and
the user trains the system by registering the prototype face
images. This phase can also be automated as described in
the previous paragraph.

The matching phase involves the reconstruction of the
novel image specified by the deformable model. Final re-
sults are presented in the form of combination coefficients
for shape and texture parameters. We propose to evaluate
the quality and reliability of reconstruction in terms of er-
ror residuals and correlation soon.

Figure 8: Prototype heart images (#prototypes = 20)

In this experiment, we used a test set comprising of 100
prototype images (Figure 6). The prototypes comprised of
75 images of males with mustaches and 25 images of fe-
males. Figure 7 displays the reconstructions of some novel
images. The main points that were tested here are: (1) the
algorithm is able to reconstruct novel faces by combining
prototype faces; (2) the algorithm is capable of handling
significant variations (“gender”, in this case); (3) the linear
combinations paradigm can be exploited to generate new
images, that have not been seen earlier (male images with-
out mustaches, in this case). The top two rows in Figure 7
display the reconstructions of two novel images of females,



not present in the training set. The last three rows display
the reconstruction of male images without any mustaches.
Note that the training set did not contain any male proto-
type images without mustaches. The algorithm was still
able to use the linear combinations paradigm to appropri-
ately combine male and female prototype images to recon-
struct those novel images.

7.2 Test Set 2: Sequences of Heart Images

In order to evaluate the generality of the approach de-
scribed, we tested the system with images other than faces.
The second test set included sequences of heart pumping
taken from the MIT heart database. Since there were only
38 images, we included all the odd numbered images into
the training set and used the even numbered images as
novel images. The images used for training are given in
" Figure 8. The average image for this sequence of images
and reconstruction of some novel images are given in Fig-
ures 9 and 10. The estimated shape and texture parameters
can be used for various medical applications.

Figure 9: Average heart image

8 Discussion

In this sectioh, we analyze the various observations made
during the preliminary experiments.

8.1 Difference Decomposition Method

Despite being an elegant real time minimization method,
difference decomposition fails to produce satisfactory re-
sults in the current framework. The reason for this is the
breakdown of the local linearity assumption. In general,
for applications like tracking (as in Active Blobs), there
is an underlying assumption that the motion between two
consecutive frames follow image space constancy which
forbids extreme changes between two consecutive frames.
This assumption may not hold in the current methodology
as it may be the case that several prototypes are not similar
to the average image, hence the energy surface cannot be
assumed to be smooth. Possible ways of addressing this
problem are given as follows:

e Recompute the difference images at each iteration
Although this may help in driving the system to the
actual solution, still the overheads involved pull down
the very importance of the method as performance
will become extremely slow.
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(a) .
(b) .

©
@

(O]

Figure 10: Reconstructed nove! heart images. Left: input novel
image; Middle: average image registration; Right: reconstruction

o Time-varying Jacobian matrix
Hager and Belhumeur[14] had derived a method sim-
ilar to difference decomposition, where the Jacobian
matrix is time-varying rather than being completely
precomputed as proposed by Gleicher[13]. This sug-
gests that it may be possible to separate out the two
varying components (shape and texture) and use an
iterative technique where only one of the parameters
is modified at a time as Hager and Belthumeur do by
using an iteratively. reweighted least squares method.

e Active Appearance Models
Cootes, Edwards and Taylor[6] have used a method
similar to difference decomposition. However, they
control the parameter update step by appropriately
scaling the amount of change in parameters at each
iteration. This is done by adding the following steps
after Equation 20:

1. k=1
2. Compute the energy E with updated parameters.



3. If magnitude of E has increased from its previ-
ous value, then

4. Setk=k/2.

5. Setq' =g+ k=xAg, gotol,
6. Else

7. Setg=4q'.

This in theory restricts the system from diverging by
permitting small displacements such that the energy
of the system decreases monotonically. However, this

. technique is highly susceptible to get trapped in the
nearest local minima in the solution space and hence
is unsuitable for image reconstruction. Applications
have been shown for tracking where a rough fit is suf-
ficient to track and moreover, it is possible that iter-
ations over several frames may pull out the solution
from the local minima and drive it towards the global
minima. ‘

8.2 Levenberg Marquardt Method

" Though Levenberg Marquardt, being a non-linear
quadratic minimization method addressed the problem
of linearity, it is plagued by large computation times
required for the Hessian matrix. The major bottleneck
is the number of floating point multiplications involved
which is O(n?m?) where each image has O(n?) pixels
and there are O(m) prototype images. Possible ways of
improving the current status may involve the following:

o Minimization at random pixels

Instead of computing the Hessian matrix over all the
pixels in the images, we can choose random pixels at
each iteration. This, in theory, tries to simulate the
stochastic gradient method[42], but would be more
efficient as it would converge to the solution faster
by taking larger step sizes (implicitly controlled by
A) at each iteration, if the error function happens to be
purely quadratic. '

o Number of prototypes used
The contribution of the number of prototype images is
at least quadratic with respect to the amount of com-
putations performed. A significant improvement may
be obtained by selecting “good” prototypes and ex-
cluding redundant prototypes. This issue is addressed
in the next section.

8.3 Prototype Selection

Currently, a set of prototypes is chosen randomly and the
training is done on this set. If three prototypes are thought
to lie on a line in the prototype space, then any number
of extra prototypes on the same line are redundant and
hence should be singled out. Though different statistical
methods like k-means clustering, hierarchical clustering,
Bayes classifier etc. can be used, a normal tradeoff in-
volved is that typical pattern recognition methods require
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large training data sets which are diverse enough to charac-

- terize the whole object class[10, 36]. Some possible tech-

niques for manual or automatic selection of prototypes and
their drawbacks are as follows:

o Manual selection
Human beings, may not be good judges of variations
across different object classes, hence virtually make
this approach impossible. :

o Approximation by MDL

An useful way of estimating the good prototypes is
the minimum description length method, also known
as MDL. But the major drawback of this method is the
implicit requirement of trying out all possible combi-
nations of the prototypes and finally select a subset
that was best in spanning the whole set of the avail-
able prototypes.

o Unsupervised techniques
Use an unsupervised technique for determining simi-
larity between various prototypes and determine a hi-
erarchical grouping structure. One such technique is
agglomerative hierarchical clustering[10, 16]. An-
other way of grouping prototypes in an hierarchical
fashion was suggested by Hill and Taylor[15]. But
this method does not suggest a way of removing the

redundant prototypes, which may be possible by prun-

ing. :

e Naive Approaches
Create a similarity metric for measuring the simi-
larity between two prototypes. Initially we train the
system with all the prototypes and then determine
the similarity between each of the prototypes in the
dataset. We then drop redundant prototypes, retaining
.only one representative prototype from the group of
prototypes that were grouped together as similar.

Start with only one random prototype image in the
training set. At each step try to reconstruct another
prototype image. If the prototype could be recon-
structed satisfactorily, then discard it else include it
into the training set and re-train the system.

Currently we are implementing certain heuristics based
clustering techniques that will enable us to choose “good”
prototypes in future.

8.4 Active Appearance Models

The prototype spaces can be efficiently compressed using
PCA in both the shape and the texture space separately. In
Active Appearance Models (AAM), the dimensionality of
the composite shape and texture is further reduced by PCA.
This assumes that composite shape and texture spaces can
be modeled as a linear space. Though this would provide a
greater computational efficiency, still it is not clear how the
performance of the system would be affected when some



shape information is dependent on the texture information
or vice versa. For instance, a change in shade in a region
can occur due to local shape deformation as well as actual
variation in the object appearance. AAM can learn this
variation only in the texture space and might lose informa-
tion associated with local shape deformation whereas the

deformable model presented would learn it as a shape de-

formation or texture variation or both depending upon the
variations exhibited by the set of prototypes.

The question for using either of the mentioned ap-
proaches depends upon the requirements of the applica-
tions for which the system is being designed. Both meth-
ods have been proved to be comparable in literature. For
example, for tracking purposes where computational speed
is a big factor, AAM is more appropriate. For applications
like video compression by using techniques like morph-
ing etc. intermediate sequences may easily be generated
by doing straightforward interpolation of the mixing pa-
rameters. Intuitively, this seems to more closely resemble
human perception[23]. In AAM, it is not evident whether
simple interpolation would provide good results.

Lastly, AAM is a statistically based model. Such mod-
els can easily be confused and may not perform well if the
prototypes provided have large variations whereas we can
still expect an optimal solution in our formulation. This
emphasizes another aspect that the our model will require
much less number of prototypes for training as compared
to AAM which will need much more prototypes to reliably
learn the object class.

8.5 Invariants

An important point to ponder in the linear combinations
paradigm is that given slight variability in the same novel
image conditions, each time a different set of shape and
texture coefficients may be recovered. For instance, un-
der different illumination conditions, the combination of
the prototype textures would change as a different group
of prototypes would become important to express the ob-
served changes. Similar observations can be made when
the pose of the object changes. This variability of the com-
bination parameters will render the model unsuitable for
recognition purposes. Hence a set of possible invariants
need to be derived from the current framework. Recently a
method called guotient image has been proposed by Riklin-
Raviv and Shashua[34], which provides a way of comput-
ing signature images for different face images under vary-
ing illumination. The same idea can easily be adapted in
our model. Once the novel image has been reconstructed,
the shape parameters can be used to warp the texture to a
canonical shape and then the estimated texture can be used
to obtain a signature image.

Given that the objects under consideration are Lamber-
tian, the appearance can be defined as:

Ti(z,y) = pi(z,y)n(z,y)7s; (44)
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where T;(z, y), p(z,y) and n(z,y) are the intensity value,
surface albedo and the direction of the normal at point
(z,y) respectively. s; is the direction of point light source.
The signature or quotient image (Q) can be derived as a
normalization of the albedo as follows:

p(z,y)

T Q(z,y) = PR

(45)

Assuming that the shape parameters can be determined ac-
curately, when warped on to the same surface, the dot prod-
uct of the light source and the surface normal would be
nearly constant. Also assuming that the prototype images
appropriately span the varying illumination space, the sig-
nature image in the flexible model can be derived as below:

(b-T)(,y)

46
Tovg (z,9) o)

Tsignature (-’”a y) =

where b is the set of estimated texture paraméters for the
novel image.

8.6 Extendibility

The framework described here can easily-be-extended to
handle parameters other than just shape and texture. Illu-
mination modeling can be included in the current system
by creating a separate basis for illumination variation[30].
If the prototype images are taken appropriately under
different illumination conditions (say, with frontal light
source), the illumination can be modeled separately. Il-
Iumination prototypes can be obtained by taking several
images of the average/reference image under various light-
ing condition. These illumination prototypes can then be
used to create illumination basis as used by Hager and
Belhumeur{14]. The new objective function is given as be-
low:
1
E(Ca an) = 5 Z[W(Inovehc ' S)(:I;, ?j) - (b ' T) (x,'y)

T,y
N
- B-B) @yl +1Q_a -1)°
k=1

where B and 3 are the set of illumination bases and the
combining parameters for those bases respectively.

9 Applications
The idea explored in this paper is central to the several im-

age analysis problems. Some of the possible applications
are as follows:

o Image Registration:
This model can be used for registering deformable
models by reconstructing the shape and the texture
parameters from a set of prototypes. The mixing pa-
rameters obtained can be used for clustering similar
objects in a shape+appearance database.

(47)



o Image Analysis:
Apart from being able to model deformable ob-
jects, this model has the added benefit of the in-
formation contained in the texture. After registra-
tion/reconstruction the texture information can be
used for different analyses.

Facial expression recognition:

After registering a face, the texture information can
be used to classify the expression on a person's face.
Given that the object space is linear, if we include im-
ages of same person with different expressions, then
sufficient number of prototype images should be able
to define clusters in the prototype space where proto-
types with similar expressions get grouped together.
The novel image would then be nearer to a particular
group than other prototype groups giving us informa-
tion about expression.

MR Image registration and analysis:

Reconstruction parameters in MR images registration
might give some information whether some organ is
normal in appearance or shape. Such an application
was reported in [25] which relies on modal shape de-
formations. -Use of texture information might help in
determining inflammation, bleeding etc.

Image Compression:

The above mentioned methods may be extended to
~do analysis over time. Studying patterns of move-
ment between different prototypes may provide in-
formation about the kind of action occurring. Such
methods can be used for video compression. Such
a technique for animation using example image se-
quences has been reported in the past by Poggio and
Brunelli[33].

¢ Morphing:

Given that the model parameters have been estimated,
it would be interesting to see how different views can
be generated. It has been shown in the past the novel
views of an object can be obtained by warping the
reference image to different prototypes[45]. This idea
can be used to extend the work done in [39] to include
appearance along with physical deformations.

The deformable model can also be used for morph-
ing between multiple images as a graphics applica-
tion. This model can be used to improve the work
reported in [22] and may be extended for video com-
pression.

10 Summary

In this paper, we explored a model-based linear combina-
tions approach for modeling objects. The methodology,
implementation status, results obtained so far and possible
explanations of various observed behavior were described
in detail . Apart from these, the method was compared
with existing active appearance model and the pros and
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cons were brought out. Also various ways of extending
the existing framework have also been described.
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